You know that without oxygen to breathe, you could not live. But did you know that oxygen plays another important role in your life? High in the atmosphere, a different form of oxygen, called ozone, forms a layer that filters out harmful radiation from the sun. The colors in this map indicate the concentrations of ozone in various parts of Earth’s atmosphere. In this section, you will learn how oxygen atoms can join in pairs to form the oxygen you breathe and can also join in groups of three oxygen atoms to form ozone.

The Octet Rule in Covalent Bonding
Recall that when ionic compounds form, electrons tend to be transferred so that each ion acquires a noble gas configuration. A similar rule applies for covalent bonds. In covalent bonds, electron sharing usually occurs so that atoms attain the electron configurations of noble gases. For example, each hydrogen atom has one electron. But a pair of hydrogen atoms share these two electrons when they form a covalent bond in a hydrogen molecule. Each hydrogen atom thus attains the electron configuration of a noble gas, which is a shared pair of electrons.

Two atoms held together mainly by the attraction of the shared electrons to the positive nuclei. Two atoms held together by sharing a pair of electrons are joined by a single covalent bond. Hydrogen gas consists of diatomic molecules whose atoms share only one pair of electrons, forming a single covalent bond.

Guide for Reading

- **Key Concepts**
 - What is the result of electron sharing in covalent bonds?
 - How do electron dot structures represent shared electrons?
 - How do atoms form double or triple covalent bonds?
 - How are coordinate covalent bonds different from other covalent bonds?
 - How is the strength of a covalent bond related to its bond dissociation energy?
 - How are oxygen atoms bonded in ozone?
 - What are some exceptions to the octet rule?

- **Vocabulary**
 - single covalent bond
 - structural formula
 - unshared pair
 - double covalent bond
 - triple covalent bond
 - coordinate covalent bond
 - polyatomic ion
 - bond dissociation energy
 - resonance structure

- **Reading Strategy**
 - **Identifying Main Idea/Details**
 - List the main idea in the paragraph following the heading.
 - The Octet Rule in Covalent Bonding

As you read, let examples of how this rule is followed when a single covalent bond, a double covalent bond, and a triple covalent bond form.
The Octet Rule in Covalent Bonding

Discuss

Write electron configurations for carbon, nitrogen, oxygen, fluorine, and neon on the chalkboard. Ask, How many electrons would carbon, nitrogen, oxygen, and fluorine need to share in order to achieve the same electron configuration as neon?

(4, 3, 2, and 1 respectively)

CLASS Activity

Representing Molecules

Purpose

Students practice different ways to represent molecules.

Materials

paper and pencil

Procedure

Divide students into groups of three or four. Have them practice drawing molecular diagrams, structural formulas, electron-dot structures, and orbital diagrams for molecules such as OF\(_2\), SCl\(_2\), N\(_2\)H\(_4\), CCl\(_4\), CHCl\(_3\), and C\(_2\)H\(_6\).

Single Covalent Bonds

Download a worksheet on **Valence Electrons** for students to complete, and find additional teacher support from NSTA SciLinks.

Special Needs

Pair each student with a study partner. Have them use the periodic table and quiz each other on writing electron dot structures for single atoms and bonded atoms. Make sure they understand that the Group number for any atom, 1A to 7A, indicates the number of valence electrons that atom has, and that it is valence electrons that appear in the electron dot structures.

Differentiated Instruction

An electron dot structure such as H:H represents the shared pair of electrons of the covalent bond by two dots. The pair of shared electrons forming the covalent bond is also often represented as a dash, as in H—H for hydrogen. A structural formula represents the covalent bonds by dashes and shows the arrangement of covalently bonded atoms. In contrast, the molecular formula of hydrogen, H\(_2\), indicates only the number of hydrogen atoms in each molecule.

The halogens also form single covalent bonds in their diatomic molecules. Fluorine is one example. Because a fluorine atom has seven valence electrons, it needs one more to attain the electron configuration of a noble gas. By sharing electrons and forming a single covalent bond, two fluorine atoms each achieve the electron configuration of neon.

In the F\(_2\) molecule, each fluorine atom contributes one electron to complete the octet. Notice that the two fluorine atoms share only one pair of valence electrons. A pair of valence electrons that is not shared between atoms is called an unshared pair, also known as a lone pair or a nonbonding pair.

You can draw electron dot structures for molecules of compounds in much the same way that you draw them for molecules of diatomic elements. Water (H\(_2\)O) is a molecule containing three atoms with two single covalent bonds. Two hydrogen atoms share electrons with one oxygen atom. The hydrogen and oxygen atoms attain noble-gas configurations by sharing electrons. As you can see in the electron dot structures below, the oxygen atom in water has two unshared pairs of valence electrons.

Checkpoint

What does a structural formula represent?
Covalent Bonding

Discuss the molecular and structural formulas, electron dot structures, and orbital diagrams for fluorine, water, and ammonia molecules. If possible, display physical models. Call attention to the fact that fluorine has one half-filled orbital and forms one bond, oxygen has two half-filled orbitals and forms two bonds, and nitrogen has three and forms three bonds. Tell students carbon has two. Ask, How many covalent bonds do you think carbon forms? (Students may logically say two.)

Tell students that CH₂ does not represent a stable molecule, but CH₄ (methane) is a stable molecule. Explain the concept of electron promotion, which allows carbon to form four single covalent bonds. Point out that elements in groups 3A and 4A promote electrons to p orbitals, increasing their bonding capacity. For example, boron's electron configuration is 1s² 2s² 2p¹. Based on this configuration, students might infer that boron can form only one covalent bond. However, the chloride of boron is BCl₃ rather than BCl₂. The promotion of one 2s electron to the 2p orbital allows for the formation of three bonds. Boron does not achieve a noble-gas configuration, but it does achieve added stability by forming three bonds rather than one.

You can draw the electron dot structure for ammonia (NH₃), a suffocating gas, in a similar way. The ammonia molecule has one unshared pair of electrons.

Methane (CH₄) contains four single covalent bonds. The carbon atom has four valence electrons and needs four more valence electrons to attain a noble-gas configuration. Each of the four hydrogen atoms contributes one electron to share with the carbon atom, forming four identical carbon-hydrogen bonds. As you can see in the electron dot structure below, methane has no unshared pairs of electrons.

When carbon forms bonds with other atoms, it usually forms four bonds. You would not predict this based on carbon’s electron configuration, shown below.
Chapter 8

Section 8.2 (continued)

CLASS
Activity

Bonding for Second Row Elements

Purpose
Students gain understanding of covalent bonding and distinguish between covalent and ionic bonding.

Procedure
Have students draw electron dot structures for each element in the second row of the periodic table: Li, Be, B, C, N, O, and F. Then have them answer the following:

• Predict how many bonds each atom must form to attain a noble-gas configuration.
 (1, 2, 3, 4, 3, 2, 1)

• Can lithium form a covalent bond and reach stability?
 (no)

• Which elements can reach stability by forming covalent bonds?
 (C, N, O, F)

• Can fluorine form an ionic bond?
 (yes)

• Are the bonds in nitrogen molecules (N_2) ionic or covalent?
 (covalent)

CONCEPTUAL PROBLEM 8.1
Answers
7. a. b. c.
8. a. b.

Practice Problems Plus
The following covalent molecules have only single covalent bonds. Draw an electron dot structure for each.

a. NF_3
b. SBr_2

Inventing Electron Dot Structures
Gilbert Newton Lewis (1875–1946) was an American chemist who invented electron dot structures, which are often called Lewis structures or diagrams in his honor. These structures supported Lewis’s theory of the electron pair in chemical bonding. As a professor of physical chemistry, he expanded the theory of acids and bases by defining an acid as an electron pair acceptor and a base as an electron pair donor. The definitions encompass all Brønsted-Lowry acid-base reactions and include many others not previously categorized as acid-base reactions.

Facts and Figures

If you tried to form covalent $\text{C}—\text{H}$ bonds for methane by combining the two $2p$-electrons of the carbon with two $1s$-electrons of hydrogen atoms, you would incorrectly predict a molecule with the formula CH_2 (instead of CH_4). The formation of four bonds by carbon can be simply explained. One of carbon’s $2s$-electrons is promoted to the vacant $2p$-orbital to form the following electron configuration.

This electron promotion requires only a small amount of energy. The promotion provides four electrons of carbon that are capable of forming covalent bonds with four hydrogen atoms. Methane, the carbon compound formed by electron sharing of carbon with four hydrogen atoms, is much more stable than CH_2. The stability of the resulting methane more than compensates for the small energy cost of the electron promotion. Therefore, formation of methane (CH_4) is more energetically favored than the formation of CH_2.

CONCEPTUAL PROBLEM 8.1

Drawing an Electron Dot Structure

Hydrochloric acid (HCl (aq)) is prepared by dissolving gaseous hydrogen chloride (HCl (g)) in water. Hydrogen chloride is a diatomic molecule with a single covalent bond. Draw the electron dot structure for HCl.

Analyze
Identify the relevant concepts.

In a single covalent bond, a hydrogen and a chlorine atom must share a pair of electrons. Each must contribute one electron to the bond. First, draw the electron dot structures for the two atoms. Then show the electron sharing in the compound they produce.

Solve
Apply concepts to the situation.

In the electron dot structures, the hydrogen atom and the chlorine atom are each correctly shown to have an unpaired electron. Through electron sharing, the hydrogen and chlorine atoms are shown to attain the electron configurations of the noble gases helium and argon, respectively.

Practice Problems

7. Draw electron dot structures for each molecule.
 a. chlorine b. bromine c. iodine

8. The following molecules have single covalent bonds. Draw an electron dot structure for each.
 a. H_2O_2
 b. PCl_3
Double and Triple Covalent Bonds

Sometimes atoms bond by sharing more than one pair of electrons. Atoms form double or triple covalent bonds if they can attain a noble gas structure by sharing two pairs or three pairs of electrons. A bond that involves two shared pairs of electrons is a double covalent bond. A bond formed by sharing three pairs of electrons is a triple covalent bond.

You might think that an oxygen atom, with six valence electrons, would form a double bond by sharing two of its electrons with another oxygen atom.

\[
\text{O} \quad \text{O} \quad \text{O}_2
\]

In such an arrangement, all the electrons within the molecule would be paired. Experimental evidence, however, indicates that two of the electrons in \(\text{O}_2 \) are still unpaired. Thus, the bonding in the oxygen molecule \((\text{O}_2) \) does not obey the octet rule. You cannot draw an electron dot structure that adequately describes the bonding in the oxygen molecule.

An element whose molecules contain triple bonds is nitrogen \((\text{N}_2) \), a major component of Earth’s atmosphere illustrated in Figure 8.7. In the nitrogen molecule, each nitrogen atom has one unshared pair of electrons. A single nitrogen atom has five valence electrons. Each nitrogen atom in the nitrogen molecule must gain three electrons to have the electron configuration of neon.

\[
\text{N} \quad \text{N} \quad \text{N}_2
\]

Figure 8.7 Oxygen and nitrogen are the main components of Earth’s atmosphere. The oxygen molecule is an exception to the octet rule. It has two unpaired electrons. Three pairs of electrons are shared in a nitrogen molecule.
Earth’s atmosphere is approximately 80 percent nitrogen gas, but surprisingly few nitrogen compounds exist compared with the numerous compounds of oxygen, which constitutes only 20 percent of the atmosphere. Students may correctly surmise that the triple bond in N_2 is harder to break than a double bond and considerably harder to break than a single bond. Thus, N_2 is a stable molecule. Plant and animal life depends on nitrogen, but in order to be usable to living systems, the element must be converted to a compound, a process called nitrogen fixing. Nitrogen fixing occurs naturally when lightning provides the energy for atmospheric nitrogen to react with oxygen to form nitrogen oxides. The oxides dissolve in rain and fall to the ground where they can be utilized by plants. Nitrogen fixing bacteria in the soil are also able to convert atmospheric nitrogen to usable compounds.

Table 8.1 The Diatomic Elements

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical formula</th>
<th>Electron dot structure</th>
<th>Properties and uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorine</td>
<td>F₂</td>
<td>$F\cdot\cdot\cdot F$</td>
<td>Greenish-yellow reactive toxic gas. Compounds of fluorine, a halogen, are added to drinking water and toothpaste to promote healthy teeth.</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl₂</td>
<td>$Cl\cdot\cdot\cdot Cl$</td>
<td>Greenish-yellow reactive toxic gas. Chlorine is a halogen used in household bleaching agents.</td>
</tr>
<tr>
<td>Bromine</td>
<td>Br₂</td>
<td>$Br\cdot\cdot\cdot Br$</td>
<td>Dense red-brown liquid with pungent odor. Compounds of bromine, a halogen, are used in the preparation of photographic emulsions.</td>
</tr>
<tr>
<td>Iodine</td>
<td>I₂</td>
<td>$I\cdot\cdot\cdot I$</td>
<td>Dense gray-black solid that produces purple vapors; a halogen. A solution of iodine in alcohol (tincture of iodine) is used as an antiseptic.</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H₂</td>
<td>$H\cdot\cdot\cdot H$</td>
<td>Colorless, odorless, tasteless gas. Hydrogen is the lightest known element.</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N₂</td>
<td>$N\cdot\cdot\cdot N$</td>
<td>Colorless, odorless, tasteless gas. Air is almost 80% nitrogen by volume.</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O₂</td>
<td>$O\cdot\cdot\cdot O$</td>
<td>Inadequate</td>
</tr>
</tbody>
</table>

Up to this point in your textbook, the examples of single and triple covalent bonds have involved diatomic molecules. Table 8.1 lists the properties and uses of the elements that exist as diatomic molecules. Single, double, and triple covalent bonds can also exist between unlike atoms. For example, consider carbon dioxide (CO₂), which is present in the atmosphere and is used to carbonate many soft drinks as shown in Figure 8.8.

![Carbon dioxide molecule](image)

Carbon dioxide is an example of a triatomic molecule, which is a molecule consisting of three atoms.
Coordinate Covalent Bonds

Carbon monoxide (CO) is an example of a type of covalent bonding different from that seen in water, ammonia, methane, and carbon dioxide. A carbon atom needs to gain four electrons to attain the electron configuration of neon. An oxygen atom needs two electrons. Yet it is possible for both atoms to achieve noble-gas electron configurations by a type of bonding called coordinate covalent bonding. To see how, begin by looking at the double covalent bond between carbon and oxygen.

\[
\text{\text{C}}\quad \text{\text{O}} \quad \text{\text{C}}:O
\]

\[
\text{\text{C}}\quad \text{\text{O}} \quad \text{\text{C}}:O
\]

With the double bond in place, the oxygen has a stable configuration but the carbon does not. As shown below, the dilemma is solved if the oxygen also donates one of its unshared pairs of electrons for bonding.

\[
\text{\text{C}}:O \quad \text{\text{C}}:O
\]

A coordinate covalent bond is a covalent bond in which one atom contributes both bonding electrons. In a structural formula, you can show coordinate covalent bonds as arrows that point from the atom donating the pair of electrons to the atom receiving them. The structural formula of carbon monoxide, with two covalent bonds and one coordinate covalent bond, is \(\text{C} = \text{O}\). In a coordinate covalent bond, the shared electron pair comes from one of the bonding atoms. Once formed, a coordinate covalent bond is like any other covalent bond.

The ammonium ion \((\text{NH}_4^+)\) consists of atoms joined by covalent bonds, including a coordinate covalent bond. A polyatomic ion, such as \(\text{NH}_4^+\), is a tightly bound group of atoms that has a positive or negative charge and behaves as a unit. The ammonium ion forms when a positively charged hydrogen ion \((\text{H}^+)\) attaches to the unshared electron pair of an ammonia molecule \((\text{NH}_3)\). Most plants need nitrogen that is already combined in a compound rather than molecular nitrogen \((\text{N}_2)\) to grow. The fertilizer shown in Figure 8.9 contains the nitrogen compound ammonium sulfate.

\[
\text{H}^+ + \text{NH}_3 \rightarrow \text{H}_3\text{N}^+\text{H}^-
\]

\[
\text{H}^+ + \text{NH}_3 \rightarrow \text{H}_3\text{N}^+\text{H}^-
\]

Figure 8.9 The polyatomic ammonium ion \((\text{NH}_4^+)\), present in ammonium sulfate, is an important component of fertilizer for field crops, home gardens, and potted plants.
Section 8.2 (continued)

Discuss

Have students write the electron dot structure for SO_2. Emphasize that the structure should satisfy the bonding requirements of all three atoms. Students should find that, to satisfy the octet rule for all the atoms, they must write a structure in which one oxygen atom is double bonded to sulfur. The other oxygen is single bonded by a coordinate covalent bond in which the electrons are donated by sulfur. Point out that experimental evidence indicates that both sulfur-oxygen bonds are identical. Explain that this evidence indicates that the bonding in SO_2 must be some intermediate between a single and double bond. Ask, How does the formation of a coordinate covalent bond differ from that of a covalent bond? (In a covalent bond, each atom provides one electron, in a coordinate covalent bond, both electrons are provided by the same atom.)

Relate

Have students think of everyday examples in which the shape of an object is as important as its composition. For example, several keys might be made of the same metal, but only one will fit into a particular lock.

Table 8.2

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical formula</th>
<th>Structure</th>
<th>Properties and uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide</td>
<td>H_2O_2</td>
<td>$\text{H} : \begin{array}{c} \text{O} \ \text{O} \end{array}$</td>
<td>Colorless, unstable liquid when pure. It is used as rocket fuel. A 3% solution is used as a bleach and antiseptic.</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>SO_2</td>
<td>$\begin{array}{c} \text{O} \ \text{S} \ \text{O} \end{array}$</td>
<td>Oxides of sulfur are produced in combustion of petroleum products and coal. They are major air pollutants in industrial areas. Oxides of sulfur can lead to respiratory problems.</td>
</tr>
<tr>
<td>Sulfur trioxide</td>
<td>SO_3</td>
<td>$\begin{array}{c} \text{O} \ \text{S} \ \text{O} \end{array}$</td>
<td></td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>NO</td>
<td>$\begin{array}{c} \text{O} \ \text{N} \end{array}$</td>
<td>Oxides of nitrogen are major air pollutants produced by the combustion of fossil fuels in automobile engines. They irritate the eyes, throat, and lungs.</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>NO_2</td>
<td>$\begin{array}{c} \text{O} \ \text{N} \ \text{O} \end{array}$</td>
<td></td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>N_2O</td>
<td>$\begin{array}{c} \text{O} \ \text{N} \ \text{N} \end{array}$</td>
<td>Colorless, sweet-smelling gas. It is used as an anesthetic commonly called laughing gas.</td>
</tr>
<tr>
<td>Hydrogen cyanide</td>
<td>HCN</td>
<td>$\begin{array}{c} \text{H} \ \text{C} \ \text{N} \end{array}$</td>
<td>Colorless, toxic gas with the smell of almonds.</td>
</tr>
<tr>
<td>Hydrogen fluoride</td>
<td>HF</td>
<td>$\begin{array}{c} \text{H} \ \text{F} \end{array}$</td>
<td>Two hydrogen halides, all extremely soluble in water. Hydrogen chloride, a colorless gas with pungent odor, readily dissolves in water to give a solution called hydrochloric acid.</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>HCl</td>
<td>$\begin{array}{c} \text{H} \ \text{Cl} \end{array}$</td>
<td></td>
</tr>
</tbody>
</table>
Remember, the electron dot structure for a neutral molecule contains the same number of electrons as the total number of valence electrons in the combining atoms. The negative charge of a polyatomic ion shows the number of electrons in addition to the valence electrons of the atoms present. Because a negatively charged polyatomic ion is part of an ionic compound, the positive charge of the cation of the compound balances these additional electrons.

CONCEPTUAL PROBLEM 8.2

Drawing the Electron Dot Structure of a Polyatomic Ion

The polyatomic hydronium ion (H₃O⁺), which is found in acidic mixtures such as lemon juice, contains a coordinate covalent bond. The H₃O⁺ ion forms when a hydrogen ion is attracted to an unshared electron pair in a water molecule. Draw the electron dot structure of the hydronium ion.

1. Analyze Identify the relevant concepts.

H₃O⁺ forms by the addition of a hydrogen ion to a water molecule. Draw the electron dot structure of the water molecule. Then, add the hydrogen ion. Oxygen must share a pair of electrons with the added hydrogen ion to form a coordinate covalent bond.

2. Solve Apply the concepts to this situation.

\[\text{Hydrogen ion} \quad \text{Water molecule} \quad \text{Hydronium ion} \]

The oxygen in the hydronium ion has eight valence electrons, and each hydrogen shares two valence electrons. This satisfies the needs of both hydrogen and oxygen for valence electrons. The water molecule is electrically neutral, and the hydrogen ion has a positive charge. The combination of these two species must have a charge of 1⁺, as is found in the hydronium ion.

Practice Problems

9. Draw the electron dot structure of the hydroxide ion (OH⁻).
10. Draw the electron dot structure of the polyatomic boron tetrafluoride anion (BF₄⁻).
11. Draw the electron dot structures for sulfate (SO₄²⁻) and carbonate (CO₃²⁻). Sulfur and carbon are the central atoms, respectively.

12. Draw the electron dot structure for the hydrogen carbonate ion (HCO₃⁻). Carbon is the central atom, and hydrogen is attached to oxygen in this polyatomic anion.

Interactive Textbook

Problem-Solving 8.10 Solve Problem 10 with the help of an interactive guided tutorial.

Section 8.2 The Nature of Covalent Bonding 225
Quick LAB

Strengths of Covalent Bonds

Purpose
To compare and contrast the stretching of rubber bands and the dissociation energy of covalent bonds.

Materials
- 1 170-g (6-oz) can of food
- 2 454-g (16-oz) cans of food
- 3 No. 25 rubber bands
- metric ruler
- coat hanger
- plastic grocery bag
- paper clip
- graph paper
- pencil
- motion detector (optional)

Procedure
1. Bend the coat hanger to fit over the top of a door. The hanger should hang down on one side of the door. Measure the length of the rubber bands (in cm). Hang a rubber band on the hook created by the coat hanger.
2. Place the 170-g can in the plastic bag. Use the paper clip to fasten the bag to the end of the rubber band. Lower the bag gently until it is suspended from the end of the rubber band. Measure and record the length of the stretched rubber band. Using different combinations of food cans, repeat this process three times with the following masses: 454 g, 624 g, and 908 g.
3. Repeat Step 2, first using two rubber bands to connect the hanger and the paper clip, and then using three.
4. Graph the length difference (stretched rubber band) – unstretched rubber band on the y-axis versus mass (kg) on the x-axis for one, two, and three rubber bands. Draw the straight line that you estimate best fits the points for each set of data. (Your graph should have three separate lines.) The x-axis and y-axis intercepts of the lines should pass through zero, and the lines should extend past 1 kg on the x-axis. Determine the slope of each line in cm/kg.

Analyze and Conclude
1. Assuming the rubber bands are models for covalent bonds, what can you conclude about the relative strengths of single, double, and triple bonds?
2. How does the behavior of the rubber bands differ from that of covalent bonds?

Bond Dissociation Energies

A large quantity of heat is released when hydrogen atoms combine to form hydrogen molecules. This suggests that the product is more stable than the reactants. The covalent bond in the hydrogen molecule (H₂) is so strong that it would take 435 kJ of energy to break apart all of the bonds in 1 mole (about 2 grams) of H₂. (You will study the mole, abbreviated mol, in Chapter 12.) The energy required to break the bond between two covalently bonded atoms is known as the bond dissociation energy. This is usually expressed as the energy needed to break one mole of bonds, or 6.02×10^{23} bonds. The bond dissociation energy for the H₂ molecule is 435 kJ/mol. A large bond dissociation energy corresponds to a strong covalent bond. A typical carbon–carbon single bond has a bond dissociation energy of 347 kJ/mol. Typical carbon–carbon double and triple bonds have bond dissociation energies of 657 kJ/mol and 908 kJ/mol, respectively. Strong carbon–carbon bonds help explain the stability of carbon compounds. Compounds with only C—C and C—H single covalent bonds, such as methane, tend to be quite unreactive. They are unreactive partly because the dissociation energy for each of these bonds is high.

Resonance

Ozone in the upper atmosphere blocks harmful ultraviolet radiation from the sun. At the lower elevations shown in Figure 8.10, it contributes to smog. The ozone molecule has two possible electron dot structures.

\[
\cdot\widehat{\text{O}}\cdot\text{O} \quad \longleftrightarrow \quad \cdot\text{O}\cdot\widehat{\text{O}}\cdot
\]

Notice that the structure on the left can be converted to the one on the right by shifting electron pairs without changing the positions of the oxygen atoms.

As drawn, these electron dot structures suggest that the bonding in ozone consists of one single coordinate covalent bond and one double covalent bond. Because earlier chemists imagined that the electron pairs rapidly flip back and forth, or resonate, between the different electron dot structures, they used double-headed arrows to indicate that two or more structures are in resonance.

Double covalent bonds are usually shorter than single bonds, so it was believed that the bond lengths in ozone were unequal. Experimental measurements show, however, that this is not the case. The two bonds in ozone are the same length. This result can be explained if you assume that the actual bonding in the ozone molecule is the average of the two electron dot structures. The electron pairs do not actually resonate back and forth. The actual bonding of oxygen atoms in ozone is a hybrid, or mixture, of the extremes represented by the resonance forms.

The two electron dot structures for ozone are examples of what are still referred to as resonance structures. A *resonance structure* is a structure that occurs when it is possible to draw two or more valid electron dot structures that have the same number of electron pairs for a molecule or ion. Resonance structures are simply a way to envision the bonding in certain molecules. Although no back-and-forth changes occur, double-headed arrows are used to connect resonance structures.

Checkpoint What notation is used to show that the two covalent bonds in \(\text{O}_3 \) are the same?

Figure 8.10 Although ozone high above the ground forms a protective layer that absorbs ultraviolet radiation from the sun, at lower elevations ozone is a pollutant that contributes to smog.
Exceptions to the Octet Rule

The octet rule provides guidance for drawing electron dot structures. For some molecules or ions, however, it is impossible to draw structures that satisfy the octet rule. **The octet rule cannot be satisfied in molecules whose total number of valence electrons is an odd number.** There are also molecules in which an atom has fewer, or more, than a complete octet of valence electrons. The nitrogen dioxide (NO$_2$) molecule, for example, contains a total of seventeen, an odd number, of valence electrons. Each oxygen contributes six electrons and the nitrogen contributes five. Two plausible electron dot structures can be drawn for the NO$_2$ molecule.

\[
\begin{align*}
\text{N} & \equiv \text{O} \\
\text{O} & \equiv \text{N} \equiv \text{O}
\end{align*}
\]

An unpaired electron is present in each of these structures, both of which fail to follow the octet rule. It is impossible to draw an electron dot structure for NO$_2$ that satisfies the octet rule for all atoms. Yet, NO$_2$ does exist as a stable molecule. In fact, it is produced naturally by lightning strikes of the sort shown in Figure 8.11.

A number of other molecules also have an odd number of electrons. In these molecules, as in NO$_2$, complete pairing of electrons is not possible. It is not possible to draw an electron dot structure that satisfies the octet rule. Examples of such molecules include chlorine dioxide (ClO$_2$) and nitric oxide (NO).

Several molecules with an even number of valence electrons, such as some compounds of boron, also fail to follow the octet rule. This may happen because an atom acquires less than an octet of eight electrons. The boron atom in boron trifluoride (BF$_3$), for example, is deficient by two electrons, and therefore is an exception to the octet rule. Boron trifluoride readily reacts with ammonia to make the compound BF$_3$·NH$_3$. In doing so, the boron atom accepts the unshared electron pair from ammonia and completes the octet.

\[
\begin{align*}
\text{BF}_3 & + \text{NH}_3 \rightarrow \text{BF}_3\cdot\text{NH}_3
\end{align*}
\]

Give two examples of exceptions to the octet rule.
Phosphorus pentachloride, used as a chlorinating and dehydrating agent; and sulfur hexafluoride, used as an insulator for electrical equipment, are exceptions to the octet rule. Interpreting Diagrams

How many valence electrons does the sulfur in sulfur hexafluoride (SF\(_6\)) have for the structure shown in the figure?

<table>
<thead>
<tr>
<th>Phosphorus pentachloride</th>
<th>Sulfur hexafluoride</th>
</tr>
</thead>
</table>

A few atoms, especially phosphorus and sulfur, sometimes expand the octet to include ten or twelve electrons. Consider phosphorus trichloride (PCl\(_3\)) and phosphorus pentachloride (PCl\(_5\)). Both are stable compounds in which all of the chlorines are bonded to a single phosphorus atom. Covalent bonding in PCl\(_3\) follows the octet rule because all the atoms have eight valence electrons. However, as shown in Figure 8.12, the electron dot structure for PCl\(_5\) can be written so that phosphorus has ten valence electrons.

Section 8.2 Assessment

13. **Key Concept** What electron configurations do atoms usually achieve by sharing electrons to form covalent bonds?

14. **Key Concept** How is an electron dot structure used to represent a covalent bond?

15. **Key Concept** When are two atoms likely to form a double bond between them? A triple bond?

16. **Key Concept** How is a coordinate covalent bond different from other covalent bonds?

17. **Key Concept** How is the strength of a covalent bond related to its bond dissociation energy?

18. **Key Concept** Draw the electron dot resonance structures for ozone and explain how they describe its bonding.

19. **Key Concept** List three ways in which the octet rule can sometimes fail to be obeyed.

20. What kinds of information does a structural formula reveal about the compound it represents?

21. Draw electron dot structures for the following molecules, which have only single covalent bonds:
 a. H\(_2\)
 b. PH\(_3\)
 c. CF\(_3\)

22. Use the bond dissociation energies of H\(_2\) (435 kJ/mol) and of a typical carbon-carbon bond (347 kJ/mol) to decide which bond is stronger. Explain your reasoning.

Interactive Textbook To review key concepts in Section 8.2, use it to check your answers. If your class subscribes to the Elements Handbook, use it to describe the effect of CFCs on the ozone layer. Banning the use of CFCs has saved the use of CFCs in aerosols.

Elements Handbook Read the feature on ozone on page R31 of the Elements Handbook. Describe the effect of CFCs on the ozone layer. Explain why the United States has banned the use of CFCs in aerosols.