## Connecting to Your World

Is your shirt made of 100 percent cotton or wool, or is the fabric a combination of two or more fibers? A tag sewed into the seam of the shirt usually tells you what fibers
 were used to make the cloth and the percent of each. It helps to know the percents of the components in the shirt because they affect how warm it is, whether it will need to be ironed, and how it should be cleaned. In this section you will learn how the percents of the elements in a compound are important in chemistry.

## The Percent Composition of a Compound

If you have had experience with lawn care, you know that the relative amount, or the percent, of each nutrient in fertilizer is important. In spring, you may use a fertilizer that has a relatively high percent of nitrogen to "green" the grass. In fall, you may want to use a fertilizer with a higher percent of potassium to strengthen the root system. Knowing the relative amounts of the components of a mixture or compound is often useful.

The relative amounts of the elements in a compound are expressed as the percent composition or the percent by mass of each element in the compound. The percent composition of a compound consists of a percent value for each different element in the compound. As you can see in Figure 10.13, the percent composition of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ is $\mathrm{K}=40.3 \%, \mathrm{Cr}=26.8 \%$, and $\mathrm{O}=32.9 \%$. These percents must total $100 \%(40.3 \%+26.8 \%+32.9 \%=$ $100 \%$ ). The percent by mass of an element in a compound is the number of grams of the element divided by the mass in grams of the compound, multiplied by $100 \%$.

$$
\% \text { mass of element }=\frac{\text { mass of element }}{\text { mass of compound }} \times 100 \%
$$

Percent Composition from Mass Data Imagine you are a chemist who has just finished the synthesis of a new compound. You have purified your product and stored the crystalline solid in a vial. Now you must verify the composition of your new compound and determine its molecular formula. You use analytical procedures to determine the relative masses of each element in the compound and calculate the percent composition.

Figure 10.13 Potassium chromate $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$ is composed of $40.3 \%$ potassium, $26.8 \%$ chromium, and 32.9\% oxygen. Interpreting Diagrams How does this percent composition differ from the percent composition of potassium dichromate ( $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ), a compound composed of the same three elements?

Guide for Reading
Key Concepts

- How do you calculate the percent by mass of an element in a compound?
- What does the empirical formula of a compound show?
- How does the molecular formula of a compound compare with the empirical formula?
Vocabulary
percent composition empirical formula


## Reading Strategy

Comparing and Contrasting
When you compare and contrast things, you examine how they are alike and different. As you read, list the similarities and differences
between empirical and molecular formulas.


Potassium chromate, $\mathrm{K}_{2} \mathrm{CrO}_{4}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$


Potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

For help with percents go to page R72.
$\qquad$ -

Nteractive Textbook
Problem-Solving $\mathbf{1 0 . 3 3}$ Solve Problem 33 with the help of an interactive guided tutorial.

## SAMPLE PROBLEM 10.9

## Calculating Percent Composition from Mass Data

When a $13.60-\mathrm{g}$ sample of a compound containing only magnesium and oxygen is decomposed, 5.40 g of oxygen is obtained. What is the percent composition of this compound?

1 Analyze List the knowns and the unknowns.
Knowns
Unknowns

- mass of compound $=13.60 \mathrm{~g}$
- percent $\mathrm{Mg}=$ ? $\% \mathrm{Mg}$
- mass of oxygen $=5.40 \mathrm{~g} \mathrm{O}$
- percent $\mathrm{O}=$ ? \% O
- mass of magnesium $=$

$$
13.60 \mathrm{~g}-5.40 \mathrm{~g}=8.20 \mathrm{~g} \mathrm{Mg}
$$

The percent by mass of an element in a compound is the mass of that element divided by the mass of the compound multiplied by $100 \%$.

## Calculate Solve for the unknown.

$$
\begin{aligned}
\% \mathrm{Mg} & =\frac{\text { mass of } \mathrm{Mg}}{\text { mass of compound }} \times 100 \%=\frac{8.20 \mathrm{~g}}{13.60 \mathrm{~g}} \times 100 \% \\
& =60.3 \% \\
\% \mathrm{O} & =\frac{\text { mass of } \mathrm{O}}{\text { mass of compound }} \times 100 \%=\frac{5.40 \mathrm{~g}}{13.60 \mathrm{~g}} \times 100 \% \\
& =39.7 \%
\end{aligned}
$$

3 Evaluate Does the result make sense?
The percents of the elements add up to $100 \%$ :

$$
60.3 \%+39.7 \%=100 \%
$$

## Practice Problems

32. A compound is formed when 9.03 g Mg combines completely with 3.48 g N . What is the percent composition of this compound?
33. When a $14.2-\mathrm{g}$ sample of mercury(II) oxide is decomposed into its elements by heating, 13.2 g Hg is obtained. What is the percent composition of the compound?


Percent Composition from the Chemical Formula You can also calculate the percent composition of a compound if you know only its chemical formula. The subscripts in the formula of the compound are used to calculate the mass of each element in a mole of that compound. The sum of these masses is the molar mass. Using the individual masses of the elements and the molar mass you can calculate the percent by mass of each element in one mole of the compound. Divide the mass of each element by the molar mass and multiply the result by $100 \%$.

$$
\% \text { mass }=\frac{\text { mass of element in } 1 \text { mol compound }}{\text { molar mass of compound }} \times 100 \%
$$

The percent composition of a compound is always the same, as Figure 10.14 on the preceding page indicates.

## $\sqrt{ }$ Checkpoint How can you determine the percent by mass of an element in a compound if you know only the compound's formula?

## SAMPLE PROBLEM 10.10

## Calculating Percent Composition from a Formula

Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, the fuel commonly used in gas grills, is one of the compounds obtained from petroleum. Calculate the percent composition of propane.

Analyze List the knowns and the unknowns.

## Knowns

- mass of C in $1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}=36.0 \mathrm{~g}$
- mass of H in $1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}=8.0 \mathrm{~g}$
- molar mass of $\mathrm{C}_{3} \mathrm{H}_{8}=44.0 \mathrm{~g} / \mathrm{mol}$

Calculate the percent by mass of each element by dividing the mass of that element in one mole of the compound by the molar mass of the compound and multiplying by $100 \%$.

Calculate Solve for the unknowns.

$$
\begin{aligned}
& \% \mathrm{C}=\frac{\text { mass of } \mathrm{C}}{\text { mass of propane }} \times 100 \%=\frac{36.0 \mathrm{~g}}{44.0 \mathrm{~g}} \times 100 \%=81.8 \% \\
& \% \mathrm{H}=\frac{\text { mass of } \mathrm{H}}{\text { mass of propane }} \times 100 \%=\frac{8.0 \mathrm{~g}}{44.0 \mathrm{~g}} \times 100 \%=18 \%
\end{aligned}
$$

Evaluate Does the result make sense?
The percents of the elements add up to $100 \%$ when the answers are expressed to two significant figures.

## Practice Problems

34. Calculate the percent composition of these compounds.
a. ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$
b. sodium hydrogen sulfate $\left(\mathrm{NaHSO}_{4}\right)$

Unknowns

- percent C = ? \% C - percent $\mathrm{H}=$ ? \% H

Problem-Solving $\mathbf{1 0 . 3 5}$
Solve Problem 35 with the help of an interactive guided tutorial. with ChemASAP


Percent Composition as a Conversion Factor You can use percent composition to calculate the number of grams of any element in a specific mass of a compound. To do this, multiply the mass of the compound by a conversion factor based on the percent composition of the element in the compound. Suppose you want to know how much carbon and hydrogen are contained in 82.0 g of propane. In Sample Problem 10.10, you found that propane is $81.8 \%$ carbon and $18 \%$ hydrogen. That means that in a $100-\mathrm{g}$ sample of propane, you would have 81.8 g of carbon and 18 g of hydrogen. You can use the ratio $81.8 \mathrm{~g} \mathrm{C} / 100 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$ to calculate the mass of carbon contained in 82.0 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.

$$
82.0 \mathrm{gG}_{3} \mathrm{H}_{8} \times \frac{81.8 \mathrm{~g} \mathrm{C}}{100 \mathrm{gG}_{3} \mathrm{H}_{8}}=67.1 \mathrm{~g} \mathrm{C}
$$

Using the ratio $18 \mathrm{~g} \mathrm{H} / 100 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$,you can calculate the mass of hydrogen.

$$
82.0 \mathrm{gG}_{3} \mathrm{H}_{8} \times \frac{18 \mathrm{~g} \mathrm{H}}{100 \mathrm{gG}_{3} \mathrm{H}_{8}}=15 \mathrm{~g} \mathrm{H}
$$

The sum of the two masses equals 82 g , the sample size, to two significant figures ( $67.1 \mathrm{~g} \mathrm{C}+15 \mathrm{~g} \mathrm{H}=82 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$ ).
$\sqrt{\text { Checkpoint }}$
How many grams of hydrogen are contained in a 100-g sample of propane?


## Empirical Formulas

A useful formula for cooking rice is to use one cup of rice and two cups of water. If a larger amount of rice is needed, you could double or triple the amounts, for example, two cups of rice and four cups of water. The formulas for some compounds also show a basic ratio of elements. Multiplying that ratio by any factor can produce the formulas for other compounds.

The percent composition of your newly synthesized compound is the data you need to calculate the basic ratio of the elements contained in the compound. The basic ratio, called the empirical formula, gives the lowest whole-number ratio of the atoms of the elements in a compound. For example, a compound may have the empirical formula $\mathrm{CO}_{2}$. The empirical formula shows the kinds and lowest relative count of atoms or moles of atoms in molecules or formula units of a compound. Figure 10.15 shows that empirical formulas may be interpreted at the microscopic (atomic) or macroscopic (molar) level.

An empirical formula may or may not be the same as a molecular formula. For example, the lowest ratio of hydrogen to oxygen in hydrogen peroxide is $1: 1$. Thus the empirical formula of hydrogen peroxide is HO. The actual molecular formula of hydrogen peroxide has twice the number of atoms as the empirical formula. The molecular formula is $(\mathrm{HO}) \times 2$, or $\mathrm{H}_{2} \mathrm{O}_{2}$. But notice that the ratio of hydrogen to oxygen is still the same, 1:1. - The empirical formula of a compound shows the smallest whole-number ratio of the atoms in the compound. The molecular formula tells the actual number of each kind of atom present in a molecule of the compound. For carbon dioxide, the empirical and molecular formulas are the same- $\mathrm{CO}_{2}$. Figure 10.16 shows two compounds of carbon having the same empirical formula (CH) but different molecular formulas.

Figure 10.16 Ethyne $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$, also called acetylene, is a gas used in welder's torches. Styrene $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)$ is used in making polystyrene. These two compounds have the same empirical formula. Calculating What is the empirical formula of ethyne and styrene?

Figure 10.15 A formula can be interpreted on a microscopic level in terms of atoms or on a macroscopic level in terms of moles of atoms.

## Word Origins

Empirical comes from the Latin word empiricus meaning a doctor relying on experience alone. An empirical formula must be obtained from experimental data. Thus, an empirical formula relies on experience. Is a molecular formula also based on experimental data?



Table 10.3
Comparison of Empirical and Molecular Formulas

| Formula (name) | Classification of formula | Molar mass |
| :--- | :--- | :--- |
| CH | Empirical | 13 |
| $\mathrm{C}_{2} \mathrm{H}_{2}$ (ethyne) | Molecular | $26(2 \times 13)$ |
| $\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene) | Molecular | $78(6 \times 13)$ |
| $\mathrm{CH}_{2} \mathrm{O}$ (methanal) | Empirical and Molecular | 30 |
| $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ (ethanoic acid) | Molecular | $60(2 \times 30)$ |
| $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose) | Molecular | $180(6 \times 30)$ |

## Molecular Formulas

Look at the compounds listed in Table 10.3. Ethyne and benzene have the same empirical formula-CH. Methanal, ethanoic acid, and glucose, shown in Figure 10.17 have the same empirical formula- $\mathrm{CH}_{2} \mathrm{O}$. But the compounds in these two groups have different molar masses. Their molar masses are simple whole-number multiples of the molar masses of the empirical formulas, CH and $\mathrm{CH}_{2} \mathrm{O}$. The molecular formula of a compound is either the same as its experimentally determined empirical formula, or it is a simple whole-number multiple of its empirical formula.

Once you have determined the empirical formula of your newly synthesized compound, you can determine its molecular formula, but you must know the compound's molar mass. A chemist often uses an instrument called a mass spectrometer to determine molar mass. The compound is broken into charged fragments (ions) that travel through a magnetic field. The magnetic field deflects the particles from their straight-line paths. The mass of the compound is determined from the amount of deflection experienced by the particles.

From the empirical formula, you can calculate the empirical formula mass (efm). This is simply the molar mass represented by the empirical formula. Then you can divide the experimentally determined molar mass by the empirical formula mass. This gives the number of empirical formula units in a molecule of the compound and is the multiplier to convert the empirical formula to the molecular formula. For example, recall that the empirical formula of hydrogen peroxide is HO . Its empirical formula mass is $17.0 \mathrm{~g} / \mathrm{mol}$. The molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $34.0 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{34.0 \mathrm{~g} / \mathrm{mot}}{17.0 \mathrm{~g} / \mathrm{mol}}=2
$$

To obtain the molecular formula of hydrogen peroxide from its empirical formula, multiply the subscripts in the empirical formula by 2. $(\mathrm{HO}) \times 2=\mathrm{H}_{2} \mathrm{O}_{2}$.
Checkpoint How does the molecular formula for a compound relate to its empirical formula?

## SAMPLE PROBLEM 10.12

## Finding the Molecular Formula of a Compound

Calculate the molecular formula of a compound whose molar mass is $60.0 \mathrm{~g} / \mathrm{mol}$ and empirical formula is $\mathrm{CH}_{4} \mathrm{~N}$.

## 1 Analyze List the knowns and the unknown.

Knowns
Unknown

- empirical formula $=\mathrm{CH}_{4} \mathrm{~N}$
- molecular formula = ?
- molar mass $=60.0 \mathrm{~g} / \mathrm{mol}$

Calculate Solve for the unknown.
First calculate the empirical formula mass. Then divide the molar mass by the empirical formula mass to obtain a whole number. To get the molecular formula, multiply the formula subscripts by this value.

| Empirical formula | efm | Molar mass/efm | Molecular formula |
| :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{4} \mathrm{~N}$ | 30.0 | $60.0 / 30.0=2$ | $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$ |

## Evaluate Does the result make sense?

The molecular formula has the molar mass of the compound.

## Practice Problems

Teractive
Textbook
Problem-Solving 10.38 Solve Problem 38 with the help of an interactive guided tutorial.
38. Find the molecular formula of ethylene glycol, which is used as antifreeze. The molar mass is $62 \mathrm{~g} / \mathrm{mol}$ and the empirical formula is $\mathrm{CH}_{3} \mathrm{O}$.
39. Which pair of molecules has the same empirical formula?
a. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
b. $\mathrm{NaCrO}_{4}, \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

### 10.3 Section Assessment

40. Key Concept How do you calculate the percent by mass of an element in a compound?
41. Key Concept What information can you obtain from an empirical formula?
42. Key Concept How is the molecular formula of a compound related to its empirical formula?
43. Calculate the percent composition of the compound that forms when 222.6 g N combines completely with 77.4 g O .
44. Calculate the percent composition of calcium acetate $\left(\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\right)$.
45. The compound methyl butanoate smells like apples. Its percent composition is $58.8 \% \mathrm{C}, 9.8 \% \mathrm{H}$, and $31.4 \% \mathrm{O}$ and its molar mass is $102 \mathrm{~g} / \mathrm{mol}$. What is its empirical formula? What is its molecular formula?
46. What is an empirical formula? Which of the following molecular formulas are also empirical formulas? a. ribose $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}\right)$
b. ethyl butyrate $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right)$
c. chlorophyll $\left(\mathrm{C}_{55} \mathrm{H}_{72} \mathrm{MgN}_{4} \mathrm{O}_{5}\right)$
d. $\operatorname{DEET}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ON}\right)$

## Elements Handbook

Calcium Select three important compounds that contain calcium from among those discussed on page R11 of the Elements Handbook. Determine the percent of calcium in each.


Assessment 10.3 Test yourself on the concepts in Section 10.3.


