\qquad
\qquad
\qquad

DISTINGUISHING BETWEEN ATOMS

Section Review

Objectives

- Explain how isotopes differ from one another
- Use the atomic number and mass number of an element to find the numbers of protons, electrons, and neutrons
- Calculate the atomic mass of an element from isotope data

Vocabulary

- atomic number
- isotopes
- mass number
- atomic mass unit (amu)
- atomic mass
- periodic table
- period
- group

Key Equations

- atomic number $=$ number of protons $=$ number of electrons
- number of neutrons $=$ mass number - atomic number

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The number of $\quad \mathbf{1}$ in the nucleus of an atom is the atomic \qquad of that element. Because atoms are electrically neutral, the number of protons and $\quad \mathbf{3}$ in an atom are equal. The total number of $\quad \mathbf{4}$ and neutrons in an atom is the mass number. Atoms of the same element are identical in most respects, but they can differ in the number of $\mathbf{5}$ in the nucleus. Atoms that have the same number of protons but different mass numbers are called \qquad 6 .

The $\mathbf{7}$ of an element is the weighted average of the masses of the isotopes of that element. Each of the three known isotopes of hydrogen has \qquad 8 proton(s) in the nucleus. The most common hydrogen isotope has \qquad 9 neutrons. It has a
\qquad
\qquad
\qquad

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, $N T$.
\qquad 11. The atomic number of an element is the sum of the protons and electrons in an atom of that element.
\qquad 12. The atomic number of an atom is the total number of protons in an atom of that element.
\qquad 13. An atom of nitrogen has 7 protons and 7 neutrons.
14. Relative atomic masses are expressed in amus.
15. The number of neutrons in the nucleus can be calculated by subtracting the atomic number from the mass number.

Part C Matching

Match each description in Column B to the correct term in Column A

Column A

\qquad 16. atomic number
\qquad 17. periodic table
\qquad 18. mass number
\square
\qquad 19. group
d. $\frac{1}{12}$ the mass of a carbon- 12 atom
\qquad 20. isotopes
e. the number of protons in the nucleus of an atom of an element
\qquad 21. atomic mass unit (amu)
\qquad 22. atomic mass
g. a vertical column of elements in the periodic table
\qquad 23. period
h. a horizontal row of the periodic table

Part D Questions and Problems

Solve the following problem in the space provided.
24. Given the relative abundance of the following naturally occurring isotopes of oxygen, calculate the average atomic mass of oxygen.

```
oxygen-16: 99.76%
oxygen-17: 0.037%
oxygen-18: }0.204
```

