

Max Volume?

$$
\begin{aligned}
V(x) & =x(10-2 x)\left(\frac{15-2 x}{2}\right) \\
& =\left(10 x-2 x^{2}\right)\left(\frac{15-2 x}{2}\right) \\
& =\left(10 x-2 x^{2}\right)\left(\frac{5}{2}-x\right) \\
& =10 x\left(\frac{15}{2}\right)-10 x^{2}-2 x^{2}\left(\frac{15}{2}\right)+2 x^{3} \\
& =75 x-10 x^{2}-15 x^{2}+2 x^{3} \\
V(x) & =2 x^{3}-25 x^{2}+75 x
\end{aligned}
$$

b) Domain x-values that make sense

$$
\begin{aligned}
& w=10-2 x \\
& h=x, 0<x<5 \\
& l=\frac{15-2 x}{2}
\end{aligned}
$$

c) Use Desmos look the graph between $0<x<5$
$v(x)$
Volume $\approx 66 \mathrm{in}^{3}$

$$
x=1.96 \mathrm{in}
$$

d)

$$
\begin{aligned}
& V(x)=2 x^{3}-25 x^{2}+75 x \\
& V^{\prime}(x)=6 x^{2}-50 x+75 \\
& x=1.96 \\
& x=6.37 \\
& \text { From (b) the domain } \Rightarrow 0<x<5 \\
& \therefore x \neq 6.37 \\
& x=1.96 \\
& V(1.96)=2(1.96)^{3}-25(1.96)^{2}+75(1.96) \\
& V(1.96)=66.02 \mathrm{in}^{3}
\end{aligned}
$$

19) $V(x)$ Want max volume

$$
\begin{aligned}
& w=24-2 x \\
& l=2 x \\
& h=18-2 x
\end{aligned}
$$

Finish \#19 for HW 12/3/13

